Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
利用OrderedDict就很好解这道题,注意下面解答中OrderedDict的使用方法。 popitem有两种模式1)last=False模式,FIFO 2)last=True模式,LIFO
class LRUCache(object):
def __init__(self, capacity):
"""
:type capacity: int
"""
self.cache = collections.OrderedDict()
self.capacity = capacity
def get(self, key):
"""
:rtype: int
"""
if key not in self.cache:
return -1
value = self.cache.pop(key)
self.cache[key] = value
return value
def set(self, key, value):
"""
:type key: int
:type value: int
:rtype: nothing
"""
if key in self.cache:
self.cache.pop(key)
elif len(self.cache) == self.capacity:
self.cache.popitem(last=False)
self.cache[key] = value
Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
For example, Given [100, 4, 200, 1, 3, 2], The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4.
Your algorithm should run in O(n) complexity.
这里巧妙地用set的特性来弥补了题中不看顺序的特点,而且利用了set查询方便的特性。
class Solution(object):
def longestConsecutive(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
nums = set(nums)
maxLen = 0
for n in nums:
if n - 1 not in nums:
m = n
while(m + 1 in nums):
m = m + 1
maxLen = max(maxLen, m - n + 1)
return maxLen